
Ingest telemetry data and identify UX friction points
bid_ingest_telemetry.RdThis function ingests telemetry data from multiple sources and automatically identifies potential UX issues, translating them into BID framework Notice stages. It returns a hybrid object that is backward-compatible as a list of Notice stages while also providing enhanced functionality with tidy tibble access and flags extraction.
Supported telemetry sources:
shiny.telemetry (SQLite or JSON)
Shiny native OpenTelemetry (Shiny >= 1.12.0, OTLP JSON or SQLite)
DBI database connections
Format is automatically detected based on file structure and content.
OpenTelemetry Support: For Shiny >= 1.12.0 applications using native
OpenTelemetry, pass the path to OTLP JSON exports or OTEL-formatted
SQLite databases. Spans are automatically converted to events for analysis.
See vignette("otel-integration") for complete setup guide.
Note: For Quarto dashboards, shiny.telemetry only works when using
server: shiny in the Quarto YAML. Static Quarto dashboards and OJS-based
dashboards do not support shiny.telemetry. Consider alternative analytics
solutions (e.g., Plausible) for static dashboard usage tracking.
Usage
bid_ingest_telemetry(
source,
format = NULL,
events_table = NULL,
table_name = NULL,
thresholds = list()
)Arguments
- source
Either a file path to telemetry data or a DBI connection object. Supports:
SQLite databases (shiny.telemetry or OTEL format)
JSON files (shiny.telemetry logs or OTLP JSON exports)
DBI connections to databases with event or span tables When a connection is provided, it will not be closed by this function.
- format
Optional format specification ("sqlite", "json", "otlp_json", "otel_sqlite"). If NULL (default), auto-detected from file extension and structure. OTLP formats are automatically detected when file contains OpenTelemetry span data.
- events_table
Optional data.frame specifying custom events table when reading from SQLite. Must have columns: event_id, timestamp, event_type, user_id. If NULL, auto-detects standard table names (event_data, events). Cannot be used with
table_name.- table_name
Optional character string specifying the table name to read from the database. If NULL (default), auto-detects standard table names (event_data, events). Cannot be used with
events_table.- thresholds
Optional list of threshold parameters: - unused_input_threshold: percentage of sessions below which input is considered unused (default: 0.05) - delay_threshold_secs: seconds of delay considered problematic (default: 30) - error_rate_threshold: percentage of sessions with errors considered problematic (default: 0.1) - navigation_threshold: percentage of sessions visiting a page below which it's considered underused (default: 0.2) - rapid_change_window: seconds within which multiple changes indicate confusion (default: 10) - rapid_change_count: number of changes within window to flag as confusion (default: 5)
Value
A hybrid object of class c("bid_issues", "list") containing bid_stage objects for each identified issue in the "Notice" stage. The object includes:
- Legacy list
Named list of bid_stage objects (e.g., "unused_input_region", "delayed_interaction")
- issues_tbl
Attached tidy tibble with issue metadata
- flags
Global telemetry flags as named list
- created_at
Timestamp when object was created
Examples
if (FALSE) { # \dontrun{
# Works with shiny.telemetry SQLite
issues <- bid_ingest_telemetry("telemetry.sqlite")
# Works with Shiny OpenTelemetry (1.12+)
issues <- bid_ingest_telemetry("otel_spans.json")
# Use sensitivity presets for easier configuration
strict_issues <- bid_ingest_telemetry(
"telemetry.sqlite",
thresholds = bid_telemetry_presets("strict")
)
# Analyze JSON log with custom thresholds
issues <- bid_ingest_telemetry(
"telemetry.log",
format = "json",
thresholds = list(
unused_input_threshold = 0.1,
delay_threshold_secs = 60
)
)
# Use a DBI connection object directly
con <- DBI::dbConnect(RSQLite::SQLite(), "telemetry.sqlite")
issues <- bid_ingest_telemetry(con)
# Connection remains open for further use
DBI::dbDisconnect(con)
# Specify custom table name
issues <- bid_ingest_telemetry(
"telemetry.sqlite",
table_name = "my_custom_events"
)
# Same analysis workflow for both shiny.telemetry and OTEL
if (length(issues) > 0) {
# Take first issue and continue with BID process
interpret_result <- bid_interpret(
previous_stage = issues[[1]],
central_question = "How can we improve user engagement?"
)
}
} # }